淡江大學 9 9 學年度第 2 學期課程教學計畫表

課程名稱	微飛行器特論 SPECIAL TOPICS ON MICRO AERIAL VEHICLES	授課教師	楊龍杰 Yang Lung-jieh	
開課系級	機電一博士班A	開課	選修 單學期 3學分	
WII WIE MY 195	TEBXD1A	資料	一 返沙 干于别 0千分	

學系(門)教育目標

- 一、教育學生整合基礎科學與工程應用的原則,使其能從事機電工程相關實務或學術研究。
- 二、培育具有獨立研究能力之研發人才為宗旨。
- 三、培育學生具全球競爭的技能,以迎接不同的生涯選項並對終身學習奠定良好的基礎。

學生基本能力

- A. 具備機電工程與應用所需的數理與工程知識。
- B. 具備規劃及執行工程及系統的能力。
- C. 邏輯思考分析整合及解決問題能力。
- D. 創新設計與工程實作能力。
- E. 具有審慎的工作態度與安全作業意識。
- F. 開闊學生國際化之視野並與國際接軌。
- G. 團隊合作思維。
- H. 專業倫理認知。
- I. 終身學習精神。

從基本流體力學、空氣動力學與飛行力學介紹出發,再針對"金探子"微飛行器之設計、製造、風洞、實作、試飛、期末報告,作一完整之學習體驗。

課程簡介

This course provides an overall briefing of MAV technology from the theoretical background to the hands-on work of the flapping MAV "Golden-Snitch".

本課程教學目標與目標層級、學生基本能力相關性

一、目標層級(選填):

- (一)「認知」(Cognitive 簡稱C)領域: C1 記憶、C2 瞭解、C3 應用、C4 分析、 C5 評鑑、C6 創造
- (二)「技能」(Psychomotor 簡稱P)領域:P1 模仿、P2 機械反應、P3 獨立操作、P4 聯結操作、P5 自動化、P6 創作
- (三)「情意」(Affective 簡稱A)領域: A1 接受、A2 反應、A3 重視、A4 組織、A5 內化、A6 實踐

二、教學目標與「目標層級」、「學生基本能力」之相關性:

- (一)請先將課程教學目標分別對應前述之「認知」、「技能」與「情意」的各目標層級, 惟單項教學目標僅能對應C、P、A其中一項。
- (二)若對應「目標層級」有1~6之多項時,僅填列最高層級即可(例如:認知「目標層級」 對應為C3、C5、C6項時,只需填列C6即可,技能與情意目標層級亦同)。
- (三)再依據所訂各項教學目標分別對應該系「學生基本能力」。單項教學目標若對應「學生基本能力」有多項時,則可填列多項「學生基本能力」(例如:「學生基本能力」可對應A、AD、BEF時,則均填列)。

序	教學目標(中文)	业 段口栖(ゼナ)		相關性				
號	(Y) 教学日保(TX)		教學目標(英文)	目標層級	學生基本能力			
1	對基本流體力學有全貌之認認	哉.	have an overall understanding of the fundamentals of fluid mechanics.	C4 ABCDFI				
2	對空氣動力學有基本的認識.		have an overall understanding of aerodynamics.	C4 ABCDFI				
3	對飛行力學有基本認識.		have a brief knowing of flight mechanics.	C4 ABCDFI				
4	案例探討:拍翼式微飛行器.		case study: the flapping micro air vehicles.	C4	ABCDFI			
	教學目標之教學策略與評量方法							
序號			教學策略	評量方法				
1	對基本流體力學有全貌之認識.		課堂講授	出席率、報告、期中 考、期末考				
2	對空氣動力學有基本的認識.		課堂講授	出席率、報告、期中 考、期末考				
3	對飛行力學有基本認識.		課堂講授	出席率、報告、期中 考、期末考				
4	案例探討:拍翼式微飛行器.		課堂講授	出席率、報告、期中 考、期末考				
	授課進度表							
週次	$\nabla [\Pi HH HH HH] = \Pi \nabla (\nabla HH HHH) \nabla (\nabla HHHHHHHHHHHHHHHHHHHHH$		Subject/Topics)		備註			
1	1 100/02/14~ 100/02/20 Fundamentals of fluid mechanics-tensor analysis and Reynolds transport theorem							
2	100/02/21~							

3	100/02/28~ 100/03/06	Fundamentals of fluid mechanics-potential flows, Bernoulli equation and Kutta-Joukowski law				
4	100/03/07~ 100/03/13	Fundamentals of fluid mechanics-dimensional analysis, discretilization, numerical computation and dimensionless paramters				
5	100/03/14~ 100/03/20	Fundamentals of fluid mechanics-viscous flows and the boundary layer theory (Blasius solution)				
6	100/03/21~ 100/03/27	Fundamentals of fluid mechanics-flow separation and compressible flows				
7	100/03/28~ 100/04/03	Fundamentals of aerodynamics-airfoil section, lift, downwash, tip vortex and the induced drag				
8	100/04/04~ 100/04/10	Fundamentals of aerodynamics— power analysis, endurance and range estimation				
9	100/04/11~ 100/04/17	3-D equations of motion for a rigid aircraft				
10	100/04/18~ 100/04/24	Mid-term exam				
11	100/04/25~ 100/05/01	Coordinate transformation, the Euler angles and inertial sensors				
12	100/05/02~ 100/05/08	Small disturbance equations of motion and the linearized theory				
13	100/05/09~ 100/05/15	Longitudinal stability analysis: short period and phugoid modes				
14	100/05/16~ 100/05/22	Lateral stability analysis: roll, spiral and Dutch-roll modes				
15	100/05/23~ 100/05/29	Control surfaces for longitudinal and lateral flight modes				
16	100/05/30~ 100/06/05	Introduction to micro air vehicles				
17	100/06/06~ 100/06/12	Flapping MAVs, vertebrate and insect flights				
18	100/06/13~ 100/06/19	Final exam				
	修課應 :意事項	A term presentation may be necessary; please have your attention to the Professor's order.				
孝	文學設備	電腦、投影機				
孝	放材課本	老師自編講義.				
爹	学書籍	1.AIAA books about MAVs 2.I.G. Currie, Fundamental Mechanics of Fluids, McGraw-Hill, 1974.				

批改作業 篇數	篇(本欄位僅適用於所授課程需批改作業之課程教師填寫)				
學期成績計算方式	◆平時考成績:40.0 % ◆期中考成績:30.0 % ◆期末考成績:30.0 % ◆作業成績: % ◆其他〈〉: %				
備考	「教學計畫表管理系統」網址: http://info.ais.tku.edu.tw/csp 或由教務處首頁〈網址: http://www.acad.tku.edu.tw/index.asp/〉教務資訊「教學計畫表管理系統」進入。 ※非法影印是違法的行為。請使用正版教科書,勿非法影印他人著作,以免觸法。				

TEBXD1E3101 0A

第 4 頁 / 共 4 頁 2011/1/13 18:09:49