

Syllabus

Prof. Der-Ming Ma, Ph.D.

E750, Engineering Building, Department of Aerospace Engineering

Tel: (02)2621-5656 ext. 3316; Fax: (02)2620-9746

E-mail: derming@mail.tku.edu.tw, Course Web Site: http://dctsp.ec.tku.edu.tw/aerospace

Course: Automatic Control System

3 credits

Fall. 2005

Course Objective:

Analysis and design of continuous-time control systems using frequency- and time-domain methods. The classical methods of control engineering are covered: Laplace transforms and transfer functions; root locus design; Routh-Hurwitz stability analysis; frequency response methods, including Bode, Nyquist, and Nichols; steady-state error for standard test signals; second-order system approximations; and phase and gain margin and bandwidth.

Prerequisite: Dynamics, Ordinary Differential Equations

Class: Class 2007-B, Aerospace Eng. (Junior)

Lecture: Tue: 4:10 ~ 5:00 PM, E311; Thu: 2:10 ~ 4:00PM, E311.

Office hours: Mon, Tue, Thu, and Fri.11:00AM ~ 6:00PM or by appointment.

Textbook:

Richard C. Dorf and Robert H. Bishop, *Modern Control Systems*, 10th ed., Pearson Education, Inc., 2005. (Imported by 偉明圖書有限公司)

Course Schedule:

Week	Dates	Material covered
1st week	09/13, 09/15	Syllabus, Introduction to Control Systems.
2 nd week	09/20, 09/22	Mathematic Methods of Systems
3 rd week	09/27, 09/29	Mathematic Methods of Systems, State Variable Methods
4th week	10/04, 10/06	State Variable Methods, Feedback Control system Characteristics
5 th week	10/11, 10/13	Feedback Control system Characteristics, 1st Exam (7:00~9:00 PM, 10/14, Friday),
6 th week	10/18, 10/20	The Performance of Feedback Control Systems
7 th week	10/25, 10/27	The Stability of Linear Feedback Systems
8th week	11/01, 11/03	The Root Locus Method
9th week	11/08, 11/10	The Root Locus Method
10 th week		2 nd Exam (11/17)
11th week	11/22, 11/24	Frequency Domain Method
12th week	11/29, 12/01	Frequency Domain Method
13th week	12/06, 12/08	Stability in the Frequency Domain
14th week	12/13, 12/15	Stability in the Frequency Domain, 3 rd Exam (7:00~9:00 PM, 12/16, Friday),
15 th week	12/20, 12/22	Design of Feedback Control Systems,
16 th week	12/27, 12/29	Design of Feedback Control Systems,
17 th week	01/03, 01/05	Design of Feedback Control Systems , 4th Exam (01/05)
18th week		

Grading Policy*:

1. Quizzes, Homeworks, Class participation,

30%

2. Exams,

1st Exam includes: Introduction to Control Systems (Chapter 1), Mathematic Methods of Systems (Chapter 2), State Variable Methods (Chapter 3), and Feedback Control system Characteristics (Chapter 4),
2nd Feedback Control System Characteristics (Chapter 4),

15%

2nd Exam includes: The Performance of Feedback Control Systems (Chapter 5), The Stability of Linear Feedback Systems (Chapter 6), and The Root Locus Method (Chapter 7),

15%

3rd Exam includes: Frequency Domain Method (Chapter 8) and Stability in the Frequency Domain (Chapter 9) 15%

4th Exam includes: Design of Feedback Control Systems (Chapter 10)

25%

Useful Links:

- 1. The MCS website: http://www.prenhall.com/dorf .
- 2. Control Tutorials for Matlab (http://www.engin.umich.edu/group/ctm/)

* I reserve the right to change the policy.

-