Tamkang University Academic Year 112, 2nd Semester Course Syllabus

Course Title	LINEAR ALGEBRA	Instructor	JEONG JAESIK
Course Class	TKFXB1B DEPARTMENT OF ARTIFICIAL INTELLIGENCE, 1B	Details	- General Course - Required - One Semester
Relevance to SDGs	SDG4 Quality education SDG9 Industry, Innovation, and Infrastructure SDG17 Partnerships for the goals		

Departmental Aim of Education
I. Students may analyze problems in applied science based on the fundamental knowledge of programming, mathematics, and artificial intelligence.
ㅍ. Students may plan and implement an AI system following the procedures of problem analysis, experiment testing, data visualizing, derivation and deduction.
III. Educate the students to be AI engineers who may accomplish their missions indepedently and may collaborate with their colleagues in the workplace.
IV. Students may have basic skills and global competence for career diversification, and may keep lifelong learning.

Subject Departmental core competences
A. Professional analysis.(ratio:65.00)
B. Practical application.(ratio:20.00)
C. Professional attitude.(ratio:10.00)
D. Global Mobility.(ratio:5.00)

Subject Schoolwide essential virtues

1. A global perspective. (ratio:5.00)
2. Information literacy. (ratio:30.00)
3. A vision for the future. (ratio:10.00)
4. Moral integrity. (ratio:5.00)
5. Independent thinking. (ratio:30.00)
6. A cheerful attitude and healthy lifestyle. (ratio:5.00)
7. A spirit of teamwork and dedication. (ratio:10.00)
8. A sense of aesthetic appreciation. (ratio:5.00)

Linear Algebra is a foundational course for students in mathematics, engineering, and the sciences. This course explores the core concepts of vector spaces, matrices, determinants, eigenvalues, and eigenvectors. Through a combination of

Course
Introduction theoretical understanding and practical applications, students will learn how to solve linear equations, perform vector operations, and understand linear transformations. This course involves the basics for further study in higher mathematics and provides essential mathematics for various applied fields.

The correspondences between the course's instructional objectives and the cognitive, affective, and psychomotor objectives.
Differentiate the various objective methods among the cognitive, affective and psychomotor domains of the course's instructional objectives.
I. Cognitive : Emphasis upon the study of various kinds of knowledge in the cognition of the course's veracity, conception, procedures, outcomes, etc.
II.Affective : Emphasis upon the study of various kinds of knowledge in the course's appeal, morals, attitude, conviction, values, etc.
III.Psychomotor: Emphasis upon the study of the course's physical activity and technical manipulation.

	Teaching Objectives				objective methods
1	1. Enhancing Analytical Skills 2. Foundation for Advanced Studies 3. Bridging Theory and Practice				Cognitive
The correspondences of teaching objectives : core competences, essential virtues, teaching methods, and assessment					
No.	Core Competences		Essential Virtues	Teaching Methods	Assessment
1	ABCD		12345678	Lecture, Discussion	Testing, Study Assignments
Course Schedule					
Week	Date	Course Contents			Note
1	$\begin{aligned} & \text { 113/02/19~ } \\ & 113 / 02 / 25 \end{aligned}$	Introduction to Systems of Linear Equations			
2	$\begin{aligned} & 113 / 02 / 26 ~ \\ & 113 / 03 / 03 \end{aligned}$	Gaussian Elimination and Gauss-Jordan Elimination, Operations with Matrices			
3	$\begin{aligned} & \text { 113/03/04~ } \\ & 113 / 03 / 10 \end{aligned}$	Properties of Matrix operations, The Inverses of a Matrix			
4	$\begin{aligned} & 113 / 03 / 11 ~ \\ & 113 / 03 / 17 \end{aligned}$	Elementary Matrices, Markov Chains			
5	$\begin{aligned} & \text { 113/03/18~ } \\ & 113 / 03 / 24 \end{aligned}$	The Determinant of a Matrix			

6	$113 / 03 / 25 \sim$ $113 / 03 / 31$	Determinants and Elementary Operations, Properties of Determinants	
7	$113 / 04 / 01 \sim$ $113 / 04 / 07$	Holidays (Children' s Day, Tomb Sweeping Day)	
8	$113 / 04 / 08 \sim$ $113 / 04 / 14$	Vectors in Rn, Vector Spaces	
9	$113 / 04 / 15 \sim$ $113 / 04 / 21$	Midterm Exam Week	
10	$113 / 04 / 22 \sim$ $113 / 04 / 28$	Subspaces of Vector Spaces, Spanning Sets and Linear Independence	
11	$113 / 04 / 29 \sim$ $113 / 05 / 05$	Basic and Dimension, Rank of a Matrix and Systems of Linear Equations	
12	$113 / 05 / 06 \sim$ $113 / 05 / 12$	Coordinates and Change of Basis, Length and Dot Course Content teaching	Product in Rn

Requirement		
Textbooks and Teaching Materials	Using teaching materials from other writers:Textbooks Name of teaching materials: Elementary Linear Algebra 8th Edition - Ron Larson	
References		
Grading Policy		
Note	This syllabus may be uploaded at the website of Course Syllabus Management System at http://info.ais.tku.edu.tw/csp or through the link of Course Syllabus Upload posted on the home page of TKU Office of Academic Affairs at http://www.acad.tku.edu.tw/CS/main.php . ※ Unauthorized photocopying is illegal. Using original textbooks is advised. It is a crime to improperly photocopy others' publications.	
TKFXB1S0439 OB Page:4/4 2024/4/11		17:12:03

